GÉOMÉTRIE DANS L'ESPACE

Ph DEPRESLE

$25~\mathrm{juin}~2015$

Table des matières

1	Perspective cavalière	2
2	Positions relatives de droites et de plans de l'espace- Règles d'incidence	2
3	Parallélisme dans l'espace	4

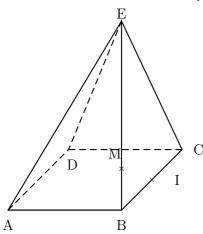
1 Perspective cavalière

Principales règles de représentation d'un objet en perspective cavalière

- 1. Les segments cachés sont représentés en pointillés. Les segments visibles sont représentés en traits pleins.
- 2. Deux droites parallèles sont représentées par deux droites parallèles et deux droites sécantes par deux droites sécantes.
- 3. Le milieu d'un segment est placé au milieu du segment dessiné. Plus généralement, il y a conservation de l'alignement des points, de l'ordre des points et des rapports de longueurs sur un segment, ainsi que sur des segments parallèles.
- 4. Les figures situées dans le plan de face sont représentées en vraie grandeur (angles et longueurs éventuellement à l'échelle).

Exemple:

On a représenté ci-dessous, en perspective cavalière, une pyramide ABCDE de hauteur [BE] et de base carrée ABCD, telle que : AB = 3 cm et BE = 5 cm. M est un point du segment [BE] et I est le milieu du segment [BC].



En réalité	Sur le dessin			
(AB) et (CD) sont parallèles	(AB) et (CD) sont parallèles			
(AD) et (BC) sont parallèles	(AD) et (BC) sont parallèles			
BE = 5cm	BE = 5cm			
AB = DC = 3cm	AB = DC = 3cm			
AD = BC = 3cm	AD = BC = 2,4cm			
AB = AD	$AB \neq AD$			
I,M,D ne sont pas alignés	I, M, D sont alignés			
$\widehat{ABE} = 90^{\circ}$	$\widehat{ABE} = 90^{\circ}$			
$\widehat{EBC} = 90^{\circ}$	$\widehat{EBC} = 30^{\circ}$			
I est le milieu de $[BC]$	I est le milieu de $[BC]$			

- Le plan de face (ABE) est appelé plan frontal.
- La droite (BC) est perpendiculaire au plan frontal; on dit que c'est une droite fuyante.
- La mesure de l'angle dessiné \widehat{DAB} est appelée l'angle de fuite.
- Le quotient $k = \frac{BCdessine}{BCreel} = \frac{2,4}{3} = 08$ est appelé le coefficient de réduction.

2 Positions relatives de droites et de plans de l'espace- Règles d'incidence

1. Règles de base

Règle 1. Dans l'espace :

- deux points distincts A, B définissent une droite et une seule, notée (AB);
- trois points distincts A, B, C non alignés définissent un plan et un seul, noté (ABC).

Règle 2. Si deux points distincts A et B appartiennent à un même plan \mathcal{P} , alors tous les points de la droite (AB) appartiennent au plan \mathcal{P} . On dit que la droite (AB) est incluse (ou contenue) dans le plan \mathcal{P} . On note : $(AB) \subset \mathcal{P}$.

Notes de cours: Ph DEPRESLE Page 2 sur 5

Règle 3. Tous les résultats de la géométrie plane s'appliquent dans n'importe quel plan de l'espace.

2 Positions relatives de deux plans de l'espace

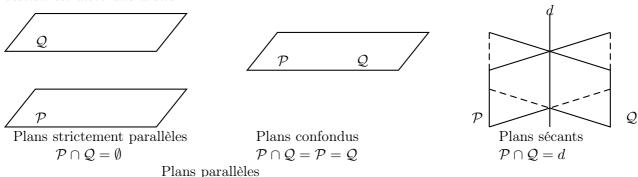
Règle 4. Soit \mathcal{P} et \mathcal{Q} deux plans distincts de l'espace.

Il existe deux possibilités, et deux seulement :

- ou \mathcal{P} et \mathcal{Q} n'ont aucun point commun;
- ou Pet Q se coupent suivant une droite.

Définition 1. On dit que deux plans sont parallèles lorsqu'ils n'ont aucun point commun ou lorsqu'ils sont confondus.

Définition 2. On dit que deux plans sont sécants lorsqu'ils ne sont pas parallèles. Leur intersection est alors une droite.



3 Positions relatives d'une droite et d'un plan

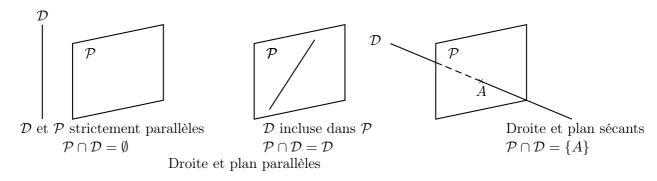
Règle 5. Soit \mathcal{P} un plan et \mathcal{D} une droite, de l'espace.

Il existe trois ,possibilités, et trois seulement :

- ou la droite \mathcal{D} et le plan \mathcal{P} n'ont aucun point commun;
- ou la droite \mathcal{D} est incluse dans le plan \mathcal{P} ;
- ou la droite \mathcal{D} et le plan \mathcal{P} ont un seul point commun.

Définition 3. On dit qu'une droite et un plan sont parallèles lorsqu'ils n'ont aucun point commun ou lorsque la droite est incluse dans le plan.

Définition 4. On dit qu'une droite et un plan sont sécants lorsqu'ils ne sont pas parallèles. Leur intersection est alors un point.



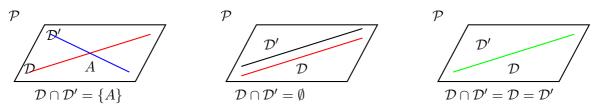
4. Positions relatives de deux droites

Définition 5. On dit que deux droites de l'espace sont coplanaires lorsqu'elles sont incluses dans un même plan.

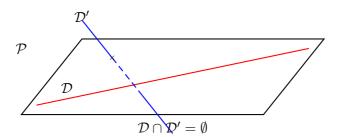
Règle 6. Soit \mathcal{D} et \mathcal{D}' deux droites distinctes de l'espace. Il existe trois possibilités, et trois seulement :

- ou les droites \mathcal{D} et \mathcal{D}' n'ont aucun point commun et ne sont pas coplanaires;
- ou les droites \mathcal{D} et \mathcal{D}' n'ont aucun point commun et sont coplanaires;
- ou les droites \mathcal{D} et \mathcal{D}' ont un seul point commun.

Définition 6. On- dit que deux droites de l'espace sont parallèles lorsqu'elles sont coplanaires et n'ont aucun point commun, ou lorsqu'elles sont confondues.



Définition 7. On dit que deux droites de l'espace sont sécantes lorsqu'elles ont un seul point commun.



Remarque:

Les deux énoncés suivants sont des conséquences des règles 1,2 et 3.

- Si deux droites de l'espace sont sécantes, alors elles sont coplanaires.
- Si deux droites de l'espace ne sont pas coplanaires, alors elles n'ont aucun point commun.
 Attention, les réciproques de ces deux énoncés sont fausses.

3 Parallélisme dans l'espace

Théorème 1. Par un point de l'espace, il passe :

- une droite et une seule parallèle à une droite donnée;
- un plan et un seul parallèle à un plan donné.

Théorème 2. Si deux droites sécantes d'un plan \mathcal{P} sont respectivement parallèles a deux droites sécantes d'un plan \mathcal{D} , alors les plans \mathcal{P} et \mathcal{D} sont parallèles.

Théorème 3. – Si deux plans sont parallèles, alors toute droite incluse dans l'un des plans est parallèle à l'autre plan.

- Si deux droites sont parallèles, alors tout plan qui contient l'une des droites est parallèle à l'autre droite.

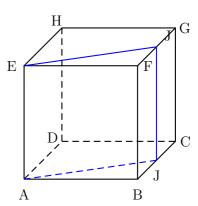
Exemple:

ABCDEFGH est un cube

l est le milieu du segment [FG];

J est le milieu du segment [BC].

- Les plans (ABC) et (EFG) sont parallèles et la droite (AD) est incluse dans le plan (ABC); donc la droite (AJ) est parallèle au plan (EFG).
- Les droites (AE) et (CG) sont parallèles et la droite (AE) est incluse dans le plan (AEI); donc le plan (AEI) est parallèle à la droite (CG).



Théorème 4. Si deux plans sont parallèles, alors tout plan qui coupe l'un coupe l'autre et les droites d'intersection sont parallèles.

Exemple:

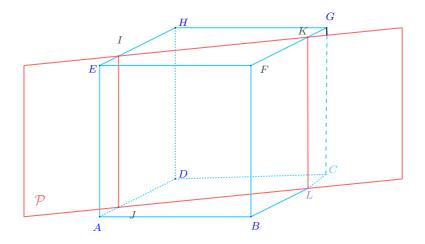
ABCDEFGH est un cube. L'intersection du plan \mathcal{P} et du plan (AEH) est la droite (I)).

L'intersection du plan \mathcal{P} et du plan (BFG) est la droite (KL).

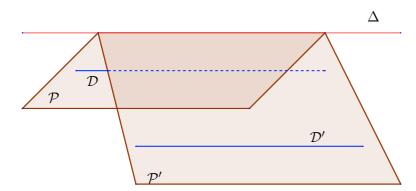
Or les plans (AEH) et (BFG) sont parallèles; donc les droites d'intersection (IJ) et (KL) sont parallèles.

De même, les plans (ABC) et (EFG) sont parallèles;

donc les droites d'intersection (IK) et (JL) sont parallèles.



Théorème 5. Si deux droites parallèles \mathcal{D} et \mathcal{D}' sont incluses respectivement dans deux plans \mathcal{P} et \mathcal{P}' sécants selon une droite Δ , alors la droite Δ est parallèle aux droites \mathcal{D} et \mathcal{D}' .



On peut aussi l'énoncer sous la forme suivante :

Si une droite \mathcal{D} est parallèle à deux plans selon une droite Δ , alors les droites \mathcal{D} et Δ sont parallèles.